MOVING BEYOND ALGORITHM THROUGH PROBLEM SOLVING

Wang Dichen, Daisy
The University of Hong Kong

OBJECTIVES

- Recognise problem solving as a tool for learning maths and as a goal of learning in itself
- · Caring diversity in problem solving activities
- Analyse problem-solving activities

THREE PERSPECTIVES

- Problem solving as a goal: Learn about how to problem solve.
- Problem solving as a process: Extend and learn math concepts through solving selected problems.
- Problem solving as a tool for applications and modelling:
 Apply math to real-world or word problems, and use
 mathematics to model the situations in these problems.

THE PROBLEMS

- Contextual problems offering opportunities for students to develop informal solution strategies, and are used to support mathematical concept building
- The context may even be rather unrealistic or within mathematics, if concept development requires it
- The contextual problem must be experienced as a real problem by the students

 Good problem solving activities provide an entry point that allows all students to be working on the same problem. Suppose 39 students want to share 5 candy bars fairly. How much can each student get?

Leo: That's 5 divided by 39, and we decided last year that you can't divide a bigger number into a smaller number.

Anthony: I think that $39 \div 5$ will be 7 remainder 4, but I think that $5 \div 39$ will make a decimal number.

Jackson: I think that you will end up with a fraction of a number because, well, because 5 and 39—you can't divide 5 by 39 equally. I think it's going to be a number below 0.

After some further discussion about which notation $(39 \div 5 \text{ or } 5 \div 39)$ actually represents the situation in this problem and what sorts of numbers might be possible answers (e.g., fractions, decimals, remainders, 'smaller numbers')

Suppose 39 students want to share 5 candy bars fairly. How much can each student get?

Mitchell: So if each kid was going to get equal shares, they would have to cut the five candy bars into little equal pieces.

Teacher (MaryAnn): Can you name those equal pieces?

Mitchell: They might be candy bars.

Teacher: Can you name the fraction that they might be?

Teacher: How many people think that you can do the problem 5 ÷ 39?

How many think no, you can't?

The results are yes, 13; no, 15.

After a pause, Leo says that he wants to change his no to a yes.

Cynthia quickly responds that Leo's representation cannot be correct because it does not yield equal shares. "That's a problem," she says.

Laila: If I cut each of the five candy bars into thirty-nine pieces and then give each kid one piece from each candy bar, you could have each kid have five-thirty-ninths of a candy bar.

After further discussion, most of the class seems convinced that Laila has proposed a valid solution to the problem

This scenario is adapted from Benefits of Teaching through Problem Solving (Diana V. Lambdin, 2003, pp.3-5)

BENEFITS OF TEACHING THROUGH PROBLEM SOLVING

- Opportunities for exploring, discussing, experimenting with, and attempting to make sense of mathematical ideas
- Confident feeling that ideas make sense
- Promotes understanding
- Helps memory
- Enhances Transfer
- Become autonomous learners

STORY: AREA OF POLYGON

A classroom with NCS students

Promoting problem solving activities

LEARNING TRAJECTORY: AREA OF POLYGON

- Right-angled triangle (from rectangle)
- 2. Formula of the area of the right-angled triangle (combine/dissect the triangle) Is it essential to dissect the triangle?
- 3. Triangle with the same base and same height.
 From right-angled triangle to irregular triangle.
 From dotted-square paper to plane figure
 Use addition / subtraction?

- Introduce the height of the triangle and the relationship between base and height.
- By induction, we get the formula of the right-angled triangle can be used for any kinds of triangle with the same base and height.
- 6. Find the area of the triangle without the help of square-dotted paper.
- 7. Bisect the **parallelogram** into 2 identical triangles. Find the base and the

height of the triangle and derive the formula.

By dissecting, rectangle > parallelogram.

By combining, 2 triangles AND a parallelogram > rectangle.

- 8. Provide different kinds of parallelograms.
- Use the same principle to introduce the area of trapeziums.

AREA OF TRIANGLE

(First version)

1. 下圖中的長方形面積是多少 cm²?

答案:____cm²

大家還記得計算長方形面積的公式嗎?

長方形面積= ____ X ____

2. 下圖是兩個完全一樣的三角形,它們合成一個長方形,你知道一個三角形的面積是多

少 cm²?

長方形的面積是_____cm²
一個三角形的面積是 cm

如何找出答案呢?

- a. 把第一題的答案_____
- b. 為什麼? (請舉手告訴老師)

大家想想可怎樣找出三角形面積的公式嗎?

三角形面積的公式

三角形面積 <u>底 X 高</u> 2

計算下列直角三角形的面積。

面積是:_____=_cm²

提示:
如果底長是 4 cm,
那高度是_____cm

面積是:_____= cm²

AREA OF TRIANGLE

(Second version)

1.	Find	the area	of the	rectangle of	n the right.
	IIII	tile alea	OI LIIC	1 Columnigio of	i tilo rigili

Answer: ____ cm²

Do you remember?

Area of a rectangle = ____ X ____

2. Find the area of the right-angled triangle on the right.

Answer: _____cm²

Show your work here.

Do you know how to find the area of a right-angled triangle?

Area of a right-angled triangle =

AREA OF TRIANGLE

(Second version)

Answer :									
Show your work he				В					
			1cm						
				I					
4. Find the area of the triangle on the right.									
Anous	am²								
Answer:cm ²								2.	
Show your work he		-							
					C				
		1.000							
		1cm				20			
5. Base on the re	sults from Q2 to Q4	, fill in the	table	belo	w.				
Triangle	Base (cm)	Heigh	ght (cm)		Area (cm)				
A									
В									

3. Find the area of the triangle on the right.

6. Do you know how to find the area of a triangle?

Area of a triangle =

AREA OF PARALLELOGRAM

1. Find the area of the parallelogram below.

Hint: we know:

Area of rectangle = Length X Width

Area of square = Length of one side X Length of one side

Area of triangle = $\frac{\text{Base X Height}}{2}$

Answer: ____ cm²

Do you know how to find the area of a parallelogram?

Area of a parallelogram =

AREA OF PARALLELOGRAM

AREA OF TRAPEZIUM

AREA OF TRAPEZIUM

Hints card

Opportunities for low-achievers

REDUCE UNKNOWN TO KNOWN

Grade 3: Multiplication

EXHAUSTIVE LISTING OF FACTORS

Find all the factors of 24.

)24)24)24)24)24)24
24 (is / is not) divisible by 1.	24 (is / is not) divisible by 2.	24 (is / is not) divisible by 3.	24 (is / is not) divisible by 4.	24 (is / is not) divisible by 5.	24 (is / is not) divisible by 6.
)24)24)24)24)24)24
24 (is / is not) divisible by 7.	24 (is / is not) divisible by 8.	24 (is / is not) divisible by 9.	24 (is / is not) divisible by 10.	24 (is / is not) divisible by 11.	24 (is / is not) divisible by 12.
)24)24)24)24)24)24
24 (is / is not) divisible by 13.	24 (is / is not) divisible by 14.	24 (is / is not) divisible by 15.	24 (is / is not) divisible by 16.	24 (is / is not) divisible by 17.	24 (is / is not) divisible by 18.
)24)24)24)24)24)24
24 (is / is not) divisible by 19.	24 (is / is not) divisible by 20.	24 (is / is not) divisible by 21.	24 (is / is not) divisible by 22.	24 (is / is not) divisible by 23.	24 (is / is not) divisible by 24.

Therefore, _____ are the factors of 24.

VOLUME OF CUBOID

CAKE DISSECTION

DISCOVERING VOLUME FORMULA

How to find all the possible nets of cubes?

情況一:位於同側:

情況二:位於兩側:

BRAINSTORM

- Think about your lesson plans for next month. Pick the lesson you see as important and design a problembased task for your students.
- Any task or activity which students have no prescribed rules or memorized procedures that they can use to solve it
- Need not be complex or elaborate

Wang Dichen, Daisy

dcwang@hku.hk

REFERENCE

- Doorman, Michiel, Drijvers, Paul, Dekker, Truus, Heuvel-Panhuizen, Marja, Lange, Jan, & Wijers, Monica. (2007). Problem solving as a challenge for mathematics education in The Netherlands. ZDM, 39(5-6), 405-418.
- Lester, F., & National Council of Teachers of Mathematics. (2003). Teaching mathematics through problem solving: Prekindergarten-grade 6. Reston, Va.: National Council of Teachers of Mathematics.
- · 周惠英 (2006)。學生真的認識「因數」嗎?《數學教育》22期,25-30。
- 馮振業、葉嘉慧(2004,6月)。數學化教學:空間觀念的培養。載鄧幹明、黃家樂、李文生、莫雅慈(編)。《香港數學教育會議-2004論文集》(頁89-96)。香港大學教育學院。